Search results
Results from the WOW.Com Content Network
ca(oh) 2 + k 2 co 3 → caco 3 + 2 koh Filtering off the precipitated calcium carbonate and boiling down the solution gives potassium hydroxide ("calcinated or caustic potash"). This method of producing potassium hydroxide remained dominant until the late 19th century, when it was largely replaced by the current method of electrolysis of ...
Potassium hydride is produced by direct combination of the metal and hydrogen at temperatures between 200 and 350 °C: 2 K + H 2 → 2 KH. This reaction was discovered by Humphry Davy soon after his 1807 discovery of potassium, when he noted that the metal would vaporize in a current of hydrogen when heated just below its boiling point.
Potassium superoxide is an inorganic compound with the formula K O 2. [6] It is a yellow paramagnetic solid that decomposes in moist air. It is a rare example of a stable salt of the superoxide anion. It is used as a CO 2 scrubber, H 2 O dehumidifier, and O 2 generator in rebreathers, spacecraft, submarines, and spacesuits.
This is done by adding H 2 O, OH −, e −, and/or H + to either side of the reaction until both atoms and charges are balanced. Consider the half reaction below: OH −, H 2 O, and e − can be used to balance the charges and atoms in basic conditions, as long as it is assumed that the reaction is in water.
Alkaline water electrolysis is a type of electrolysis that is characterized by having two electrodes operating in a liquid alkaline electrolyte. Commonly, a solution of potassium hydroxide (KOH) or sodium hydroxide (NaOH) at 25-40 wt% is used. [6]
K 2 O 2 + 2 K → 2 K 2 O. Alternatively and more conveniently, K 2 O is synthesized by heating potassium nitrate with metallic potassium: 2 KNO 3 + 10 K → 6 K 2 O + N 2 ↑. Other possibility is to heat potassium peroxide at 500 °C which decomposes at that temperature giving pure potassium oxide and oxygen. 2 K 2 O 2 → 2 K 2 O + O 2 ↑
The stepwise constant, K, for the formation of the same complex from ML and L is given by ML + L ⇌ ML 2; [ML 2] = K[ML][L] = Kβ 11 [M][L] 2. It follows that β 12 = Kβ 11. A cumulative constant can always be expressed as the product of stepwise constants. There is no agreed notation for stepwise constants, though a symbol such as K L
The superscript Plimsoll on this symbol indicates that the process has occurred under standard conditions at the specified temperature (usually 25 °C or 298.15 K). Standard states are defined for various types of substances. For a gas, it is the hypothetical state the gas would assume if it obeyed the ideal gas equation at a pressure of 1 bar.