enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Surface tension - Wikipedia

    en.wikipedia.org/wiki/Surface_tension

    Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to float on a water surface without becoming even partly submerged.

  3. Lotus effect - Wikipedia

    en.wikipedia.org/wiki/Lotus_effect

    The high surface tension of water causes droplets to assume a nearly spherical shape, since a sphere has minimal surface area, and this shape therefore minimizes the solid-liquid surface energy. On contact of liquid with a surface, adhesion forces result in wetting of the surface.

  4. Meniscus (liquid) - Wikipedia

    en.wikipedia.org/wiki/Meniscus_(liquid)

    A: The bottom of a concave meniscus. B: The top of a convex meniscus. In physics (particularly fluid statics), the meniscus (pl.: menisci, from Greek ' crescent ') is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.

  5. Properties of water - Wikipedia

    en.wikipedia.org/wiki/Properties_of_water

    Surface tension prevents the clip from submerging and the water from overflowing the glass edges. Temperature dependence of the surface tension of pure water. Water has an unusually high surface tension of 71.99 mN/m at 25 °C [64] which is caused by the strength of the hydrogen bonding between water molecules. [65] This allows insects to walk ...

  6. Water potential - Wikipedia

    en.wikipedia.org/wiki/Water_potential

    Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis , gravity , mechanical pressure and matrix effects such as capillary action (which is caused by surface tension ).

  7. Contact angle - Wikipedia

    en.wikipedia.org/wiki/Contact_angle

    Highly hydrophobic surfaces made of low surface energy (e.g. fluorinated) materials may have water contact angles as high as ≈ 120°. [15] Some materials with highly rough surfaces may have a water contact angle even greater than 150°, due to the presence of air pockets under the liquid drop. These are called superhydrophobic surfaces.

  8. Capillary pressure - Wikipedia

    en.wikipedia.org/wiki/Capillary_pressure

    The "wettability" of a fluid depends on its surface tension, the forces that drive a fluid's tendency to take up the minimal amount of space possible, and it is determined by the contact angle of the fluid. [1] A fluid's "wettability" can be controlled by varying capillary surface properties (e.g. roughness, hydrophilicity

  9. Drop (liquid) - Wikipedia

    en.wikipedia.org/wiki/Drop_(liquid)

    Water drops on a leaf A water drop falling from a tap. A drop or droplet is a small column of liquid, bounded completely or almost completely by free surfaces.A drop may form when liquid accumulates at the end of a tube or other surface boundary, producing a hanging drop called a pendant drop.