Search results
Results from the WOW.Com Content Network
If using the metric unit meters for distance and the imperial unit inches for target size, one has to multiply by a factor of 25.4, since one inch is defined as 25.4 millimeters. distance in meters = target in inches angle in mrad × 25.4 {\displaystyle {\text{distance in meters}}={\frac {\text{target in inches}}{\text{angle in mrad}}}\times 25.4}
A thousandth of an inch is a derived unit of length in a system of units using inches.Equal to 1 ⁄ 1000 of an inch, a thousandth is commonly called a thou / ˈ θ aʊ / (used for both singular and plural) or, particularly in North America, a mil (plural mils).
Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.
Likewise, since 1 inch is defined as exactly 25.4 mm, 1 mil is equal to exactly 0.0254 mm, so a similar conversion is possible from circular mils to square millimetres:
By default, the output value is rounded to adjust its precision to match that of the input. An input such as 1234 is interpreted as 1234 ± 0.5, while 1200 is interpreted as 1200 ± 50, and the output value is displayed accordingly, taking into account the scale factor used in the conversion.
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.
Metric units are units based on the metre, gram or second and decimal (power of ten) multiples or sub-multiples of these. According to Schadow and McDonald, [ 1 ] metric units, in general, are those units "defined 'in the spirit' of the metric system, that emerged in late 18th century France and was rapidly adopted by scientists and engineers.