enow.com Web Search

  1. Ad

    related to: lattice paths formula physics worksheet printable
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Free Resources

      Download printables for any topic

      at no cost to you. See what's free!

    • Projects

      Get instructions for fun, hands-on

      activities that apply PK-12 topics.

    • Resources on Sale

      The materials you need at the best

      prices. Shop limited time offers.

    • Assessment

      Creative ways to see what students

      know & help them with new concepts.

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice path - Wikipedia

    en.wikipedia.org/wiki/Lattice_Path

    Lattice path of length 5 in ℤ 2 with S = { (2,0), (1,1), (0,-1) }.. In combinatorics, a lattice path L in the d-dimensional integer lattice ⁠ ⁠ of length k with steps in the set S, is a sequence of vectors ⁠,, …, ⁠ such that each consecutive difference lies in S. [1]

  3. Self-avoiding walk - Wikipedia

    en.wikipedia.org/wiki/Self-avoiding_walk

    In mathematics, a self-avoiding walk (SAW) is a sequence of moves on a lattice (a lattice path) that does not visit the same point more than once. This is a special case of the graph theoretical notion of a path. A self-avoiding polygon (SAP) is a closed self-avoiding walk on a lattice. Very little is known rigorously about the self-avoiding ...

  4. Schröder number - Wikipedia

    en.wikipedia.org/wiki/Schröder_number

    The (large) Schröder numbers count both types of paths, and the little Schröder numbers count only the paths that only touch the diagonal but have no movements along it. [ 3 ] Just as there are (large) Schröder paths, a little Schröder path is a Schröder path that has no horizontal steps on the x {\displaystyle x} -axis.

  5. Narayana number - Wikipedia

    en.wikipedia.org/wiki/Narayana_number

    The Narayana numbers also count the number of lattice paths from (,) to (,), with steps only northeast and southeast, not straying below the x-axis, with ⁠ ⁠ peaks. The following figures represent the Narayana numbers N ⁡ ( 4 , k ) {\displaystyle \operatorname {N} (4,k)} , illustrating the above mentioned symmetries.

  6. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    Laue equation. In crystallography and solid state physics, the Laue equations relate incoming waves to outgoing waves in the process of elastic scattering, where the photon energy or light temporal frequency does not change upon scattering by a crystal lattice. They are named after physicist Max von Laue (1879–1960).

  7. Lindström–Gessel–Viennot lemma - Wikipedia

    en.wikipedia.org/wiki/Lindström–Gessel...

    An n-path from an n-tuple (,, …,) of vertices of G to an n-tuple (,, …,) of vertices of G will mean an n-tuple (,, …,) of paths in G, with each leading from to . This n -path will be called non-intersecting just in case the paths P i and P j have no two vertices in common (including endpoints) whenever i ≠ j {\displaystyle i\neq j} .

  8. Brillouin zone - Wikipedia

    en.wikipedia.org/wiki/Brillouin_zone

    The reciprocal lattices (dots) and corresponding first Brillouin zones of (a) square lattice and (b) hexagonal lattice. In mathematics and solid state physics, the first Brillouin zone (named after Léon Brillouin) is a uniquely defined primitive cell in reciprocal space.

  9. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.

  1. Ad

    related to: lattice paths formula physics worksheet printable