Search results
Results from the WOW.Com Content Network
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
In mathematics, the Khatri–Rao product or block Kronecker product of two partitioned matrices and is defined as [1] [2] [3] = in which the ij-th block is the m i p i × n j q j sized Kronecker product of the corresponding blocks of A and B, assuming the number of row and column partitions of both matrices is equal.
The Kronecker product of two Hadamard matrices of sizes m and n is an Hadamard matrix of size mn. By forming Kronecker products of matrices from the Paley construction and the 2 × 2 matrix, = [], Hadamard matrices of every permissible size up to 100 except for 92 are produced.
In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m , then their outer product is an n × m matrix.
and the corresponding operation of symmetric functions is the usual product. Also note that the Littlewood–Richardson coefficients are the analogue of the Kronecker coefficients for representations of GL n, i.e. if we write W λ for the irreducible representation corresponding to λ (where λ has at most n parts), one gets that
Let H be a Hadamard matrix of order n.The transpose of H is closely related to its inverse.In fact: = where I n is the n × n identity matrix and H T is the transpose of H.To see that this is true, notice that the rows of H are all orthogonal vectors over the field of real numbers and each have length .
In mathematics, particularly in linear algebra, the Schur product theorem states that the Hadamard product of two positive definite matrices is also a positive definite matrix. The result is named after Issai Schur [ 1 ] (Schur 1911, p. 14, Theorem VII) (note that Schur signed as J. Schur in Journal für die reine und angewandte Mathematik .