enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    t. e. In physics, circular motion is movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular ...

  3. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Acceleration is the rate of change of velocity. At any point on a trajectory, the magnitude of the acceleration is given by the rate of change of velocity in both magnitude and direction at that point. The true acceleration at time t is found in the limit as time interval Δt → 0 of Δv/Δt.

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2). In its original concept, gravity was a force between ...

  5. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    However, to distinguish acceleration relative to free fall from simple acceleration (rate of change of velocity), the unit g is often used. One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n ), defined as 9.806 65 metres per second squared , [ 5 ] or equivalently 9.806 65 newtons of ...

  6. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    Standard gravity. The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ0 or ɡn, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  7. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    At the Earth's surface this becomes: = ^ where g is the downward 9.8 m/s 2 acceleration due to gravity, and ^ is a unit vector in the radially outward direction from the center of the gravitating body. Thus here an outward proper force of mg is needed to keep one from accelerating downward.

  8. Centripetal force - Wikipedia

    en.wikipedia.org/wiki/Centripetal_force

    v. t. e. A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by ...

  9. Mechanics of planar particle motion - Wikipedia

    en.wikipedia.org/wiki/Mechanics_of_planar...

    The unit circle on the left shows the ... and V is the potential energy due to gravity ... into the acceleration using the unit vectors of the ...