enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Terminal velocity. The downward force of gravity (Fg) equals the restraining force of drag (Fd) plus the buoyancy. The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example).

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    In this case, the terminal velocity increases to about 320 km/h (200 mph or 90 m/s), which is almost the terminal velocity of the peregrine falcon diving down on its prey. The same terminal velocity is reached for a typical .30-06 bullet dropping downwards—when it is returning to earth having been fired upwards, or dropped from a tower ...

  4. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...

  5. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    The terminal velocity depends on many factors including mass, drag coefficient, and relative surface area and will only be achieved if the fall is from sufficient altitude. A typical skydiver in a spread-eagle position will reach terminal velocity after about 12 seconds, during which time they will have fallen around 450 m (1,500 ft). [4]

  6. Sediment transport - Wikipedia

    en.wikipedia.org/wiki/Sediment_transport

    For particles with a small settling velocity, diffusion will increase the complexity of the particle's path to the bottom and the time it takes to settle compared to particles with high settling velocities. The settling velocity (also called the "fall velocity" or "terminal velocity") is a function of the particle Reynolds number.

  7. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    Terminal velocity is achieved when the drag force is equal in magnitude but opposite in direction to the force propelling the object. Shown is a sphere in Stokes flow, at very low Reynolds number . Stokes flow (named after George Gabriel Stokes ), also named creeping flow or creeping motion , [ 1 ] is a type of fluid flow where advective ...

  8. Settling - Wikipedia

    en.wikipedia.org/wiki/Settling

    As the particle increases in velocity eventually the drag force and the applied force will approximately equate, causing no further change in the particle's velocity. This velocity is known as the terminal velocity, settling velocity or fall velocity of the particle. This is readily measurable by examining the rate of fall of individual particles.

  9. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    In fluid dynamics, the Reynolds number (Re) is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. [2] At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent.