enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ladder operator - Wikipedia

    en.wikipedia.org/wiki/Ladder_operator

    The ladder operators of the quantum harmonic oscillator or the "number representation" of second quantization are just special cases of this fact. Ladder operators then become ubiquitous in quantum mechanics from the angular momentum operator, to coherent states and to discrete magnetic translation operators.

  3. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    In simpler terms, the total angular momentum operator characterizes how a quantum system is changed when it is rotated. The relationship between angular momentum operators and rotation operators is the same as the relationship between Lie algebras and Lie groups in mathematics, as discussed further below. The different types of rotation ...

  4. Clebsch–Gordan coefficients - Wikipedia

    en.wikipedia.org/wiki/Clebsch–Gordan_coefficients

    Examples include the spin and the orbital angular momentum of a single electron, or the spins of two electrons, or the orbital angular momenta of two electrons. Mathematically, this means that the angular momentum operators act on a space V 1 {\displaystyle V_{1}} of dimension 2 j 1 + 1 {\displaystyle 2j_{1}+1} and also on a space V 2 ...

  5. Anti-symmetric operator - Wikipedia

    en.wikipedia.org/wiki/Anti-symmetric_operator

    Another type of operator in quantum field theory, discovered in the early 1970s, is known as the anti-symmetric operator.This operator, similar to spin in non-relativistic quantum mechanics is a ladder operator that can create two fermions of opposite spin out of a boson or a boson from two fermions.

  6. Wigner D-matrix - Wikipedia

    en.wikipedia.org/wiki/Wigner_D-matrix

    Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor. In all cases, the three operators satisfy the following commutation relations, [,] =, [,] =, [,] =, where i is the purely imaginary number and the Planck constant ħ has been set equal to one. The Casimir operator

  7. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    For this reason, a is called an annihilation operator ("lowering operator"), and a † a creation operator ("raising operator"). The two operators together are called ladder operators . Given any energy eigenstate, we can act on it with the lowering operator, a , to produce another eigenstate with ħω less energy.

  8. Angular momentum diagrams (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_diagrams...

    In quantum mechanics and its applications to quantum many-particle systems, notably quantum chemistry, angular momentum diagrams, or more accurately from a mathematical viewpoint angular momentum graphs, are a diagrammatic method for representing angular momentum quantum states of a quantum system allowing calculations to be done symbolically.

  9. Rotation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_operator_(quantum...

    Classically we have for the angular momentum =. This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector = (,,) about the -axis to ′ = (′, ′,) leaving unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):