enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.

  3. Krylov subspace - Wikipedia

    en.wikipedia.org/wiki/Krylov_subspace

    In linear algebra, the order-r Krylov subspace generated by an n-by-n matrix A and a vector b of dimension n is the linear subspace spanned by the images of b under the first r powers of A (starting from =), that is, [1] [2]

  4. Linear span - Wikipedia

    en.wikipedia.org/wiki/Linear_span

    The cross-hatched plane is the linear span of u and v in both R 2 and R 3, here shown in perspective.. In mathematics, the linear span (also called the linear hull [1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains .

  5. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    Linear subspace A linear subspace or vector subspace W of a vector space V is a non-empty subset of V that is closed under vector addition and scalar multiplication; that is, the sum of two elements of W and the product of an element of W by a scalar belong to W. [10] This implies that every linear combination of elements of W belongs to W. A ...

  6. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  7. Codimension - Wikipedia

    en.wikipedia.org/wiki/Codimension

    More generally, if W is a linear subspace of a (possibly infinite dimensional) vector space V then the codimension of W in V is the dimension (possibly infinite) of the quotient space V/W, which is more abstractly known as the cokernel of the inclusion. For finite-dimensional vector spaces, this agrees with the previous definition

  8. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    Kernel and image of a linear map L from V to W. The kernel of L is a linear subspace of the domain V. [3] [2] In the linear map :, two elements of V have the same image in W if and only if their difference lies in the kernel of L, that is, = () =.

  9. Subspace - Wikipedia

    en.wikipedia.org/wiki/Subspace

    Flat (geometry), a Euclidean subspace; Affine subspace, a geometric structure that generalizes the affine properties of a flat; Projective subspace, a geometric structure that generalizes a linear subspace of a vector space; Multilinear subspace in multilinear algebra, a subset of a tensor space that is closed under addition and scalar ...