Search results
Results from the WOW.Com Content Network
Primary metabolism in a plant comprises all metabolic pathways that are essential to the plant's survival. Primary metabolites are compounds that are directly involved in the growth and development of a plant whereas secondary metabolites are compounds produced in other metabolic pathways that, although important, are not essential to the functioning of the plant.
Plants are capable of producing and synthesizing diverse groups of organic compounds and are divided into two major groups: primary and secondary metabolites. [9] Secondary metabolites are metabolic intermediates or products which are not essential to growth and life of the producing plants but rather required for interaction of plants with their environment and produced in response to stress.
In plants, resins, fats, waxes, and complex organic chemicals are exuded from plants, e.g., the latex from rubber trees and milkweeds. Solid waste products may be manufactured as organic pigments derived from breakdown of pigments like hemoglobin, and inorganic salts like carbonates, bicarbonates, and phosphate, whether in ionic or in molecular ...
Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...
Protein anabolism is the process by which proteins are formed from amino acids. It relies on five processes: amino acid synthesis, transcription , translation , post translational modifications , and protein folding .
Secondary metabolism (also called specialized metabolism) is a term for pathways and small molecule products of metabolism that are involved in ecological interactions, but are not absolutely required for the survival of the organism. These molecules are sometimes produced by specialized cells, such as laticifers in plants. [1]
Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. [1]
Biological processes are regulated by many means; examples include the control of gene expression, protein modification or interaction with a protein or substrate molecule. Homeostasis: regulation of the internal environment to maintain a constant state; for example, sweating to reduce temperature