enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    For example, if the feasible region is defined by the constraint set {x ≥ 0, y ≥ 0}, then the problem of maximizing x + y has no optimum since any candidate solution can be improved upon by increasing x or y; yet if the problem is to minimize x + y, then there is an optimum (specifically at (x, y) = (0, 0)).

  3. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    The SciPy scientific library, for instance, uses HiGHS as its LP solver [13] from release 1.6.0 [14] and the HiGHS MIP solver for discrete optimization from release 1.9.0. [15] As well as offering an interface to HiGHS, the JuMP modelling language for Julia [16] also describes the specific use of HiGHS in its user documentation. [17]

  4. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    is the optimization variable. ‖ x ‖ 2 {\displaystyle \lVert x\rVert _{2}} is the Euclidean norm and T {\displaystyle ^{T}} indicates transpose . [ 1 ] The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function ( A x + b , c T x + d ) {\displaystyle (Ax+b,c^{T}x+d)} to lie in the second ...

  5. List of optimization software - Wikipedia

    en.wikipedia.org/wiki/List_of_optimization_software

    Given a transformation between input and output values, described by a mathematical function, optimization deals with generating and selecting the best solution from some set of available alternatives, by systematically choosing input values from within an allowed set, computing the output of the function and recording the best output values found during the process.

  6. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    Other notable mentions of GEKKO are the listing in the Decision Tree for Optimization Software, [18] added support for APOPT and BPOPT solvers, [19] projects reports of the online Dynamic Optimization course from international participants. [20] GEKKO is a topic in online forums where users are solving optimization and optimal control problems.

  7. Gurobi Optimizer - Wikipedia

    en.wikipedia.org/wiki/Gurobi_Optimizer

    Gurobi Optimizer is a prescriptive analytics platform and a decision-making technology developed by Gurobi Optimization, LLC. The Gurobi Optimizer (often referred to as simply, “Gurobi”) is a solver, since it uses mathematical optimization to calculate the answer to a problem.

  8. Bayesian optimization - Wikipedia

    en.wikipedia.org/wiki/Bayesian_optimization

    Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.

  9. CPLEX - Wikipedia

    en.wikipedia.org/wiki/CPLEX

    The IBM ILOG CPLEX Optimizer solves integer programming problems, very large [3] linear programming problems using either primal or dual variants of the simplex method or the barrier interior point method, convex and non-convex quadratic programming problems, and convex quadratically constrained problems (solved via second-order cone programming, or SOCP).

  1. Related searches product optimization bluespace examples in python 4 6 12 58 17 18

    product optimization bluespace examples in python 4 6 12 58 17 18 19