enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.

  3. Transposition cipher - Wikipedia

    en.wikipedia.org/wiki/Transposition_cipher

    Both the width of the rows and the permutation of the columns are usually defined by a keyword. For example, the keyword ZEBRAS is of length 6 (so the rows are of length 6), and the permutation is defined by the alphabetical order of the letters in the keyword. In this case, the order would be "6 3 2 4 1 5".

  4. Superpermutation - Wikipedia

    en.wikipedia.org/wiki/Superpermutation

    In combinatorial mathematics, a superpermutation on n symbols is a string that contains each permutation of n symbols as a substring. While trivial superpermutations can simply be made up of every permutation concatenated together, superpermutations can also be shorter (except for the trivial case of n = 1) because overlap is allowed.

  5. Substitution–permutation network - Wikipedia

    en.wikipedia.org/wiki/Substitution–permutation...

    A P-box is a permutation of all the bits: it takes the outputs of all the S-boxes of one round, permutes the bits, and feeds them into the S-boxes of the next round. A good P-box has the property that the output bits of any S-box are distributed to as many S-box inputs as possible.

  6. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    Suppose the initial iteration swapped the final element with the one at (non-final) position k, and that the subsequent permutation of first n − 1 elements then moved it to position l; we compare the permutation π of all n elements with that remaining permutation σ of the first n − 1 elements.

  7. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    A simple decision tree to detect the presence of a 3-clique in a 4-vertex graph. It uses up to 6 questions of the form "Does the red edge exist?", matching the optimal bound n(n − 1)/2. The (deterministic) decision tree complexity of determining a graph property is the number of questions of the form "Is there an edge between vertex u and ...

  8. Permutation pattern - Wikipedia

    en.wikipedia.org/wiki/Permutation_pattern

    The study of permutation patterns began in earnest with Donald Knuth's consideration of stack-sorting in 1968. [3] Knuth showed that the permutation π can be sorted by a stack if and only if π avoids 231, and that the stack-sortable permutations are enumerated by the Catalan numbers. [4] Knuth also raised questions about sorting with deques.

  9. Steinhaus–Johnson–Trotter algorithm - Wikipedia

    en.wikipedia.org/wiki/Steinhaus–Johnson...

    The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...