Search results
Results from the WOW.Com Content Network
Syntactic n-grams are intended to reflect syntactic structure more faithfully than linear n-grams, and have many of the same applications, especially as features in a vector space model. Syntactic n-grams for certain tasks gives better results than the use of standard n-grams, for example, for authorship attribution. [12]
An n-gram is a sequence of n adjacent symbols in particular order. [1] The symbols may be n adjacent letters (including punctuation marks and blanks), syllables , or rarely whole words found in a language dataset; or adjacent phonemes extracted from a speech-recording dataset, or adjacent base pairs extracted from a genome.
The equation for Katz's back-off model is: [2] (+) = {+ (+) (+) (+) > + (+)where C(x) = number of times x appears in training w i = ith word in the given context. Essentially, this means that if the n-gram has been seen more than k times in training, the conditional probability of a word given its history is proportional to the maximum likelihood estimate of that n-gram.
In natural language processing a w-shingling is a set of unique shingles (therefore n-grams) each of which is composed of contiguous subsequences of tokens within a document, which can then be used to ascertain the similarity between documents. The symbol w denotes the quantity of tokens in each shingle selected, or solved for.
It also took months for the code to be approved for open-sourcing. [8] Other researchers helped analyse and explain the algorithm. [4] Embedding vectors created using the Word2vec algorithm have some advantages compared to earlier algorithms [1] such as those using n-grams and latent semantic analysis.
A snippet of Python code with keywords highlighted in bold yellow font. The syntax of the Python programming language is the set of rules that defines how a Python program will be written and interpreted (by both the runtime system and by human readers). The Python language has many similarities to Perl, C, and Java. However, there are some ...
A language model is a model of natural language. [1] Language models are useful for a variety of tasks, including speech recognition, [2] machine translation, [3] natural language generation (generating more human-like text), optical character recognition, route optimization, [4] handwriting recognition, [5] grammar induction, [6] and information retrieval.
LEPOR [4] is designed with the factors of enhanced length penalty, precision, n-gram word order penalty, and recall.The enhanced length penalty ensures that the hypothesis translation, which is usually translated by machine translation systems, is punished if it is longer or shorter than the reference translation.