Search results
Results from the WOW.Com Content Network
This disturbance rejection feature allows users to treat the considered system with a simpler model insofar as the negative effects of modeling uncertainty are compensated in real time. As a result, the operator does not need a precise analytical description of the base system; one can model the unknown parts of the dynamics as internal ...
Many PID loops control a mechanical device (for example, a valve). Mechanical maintenance can be a major cost and wear leads to control degradation in the form of either stiction or backlash in the mechanical response to an input signal. The rate of mechanical wear is mainly a function of how often a device is activated to make a change.
The direct stiffness method was developed specifically to effectively and easily implement into computer software to evaluate complicated structures that contain a large number of elements. Today, nearly every finite element solver available is based on the direct stiffness method.
These are all examples of a class of problems called stiff (mathematical stiffness) systems of differential equations, due to their application in analyzing the motion of spring and mass systems having large spring constants (physical stiffness). [5] For example, the initial value problem
The degradation in dynamic EVM is due to the PA transient response affecting the preamble at the start of the packet and causing an imperfect channel estimate. Studies have shown that dynamic EVM with a 50% duty cycle square wave applied to PA Enable to be worse than the static EVM (PA Enable with 100% duty cycle).
The example shows how the Rayleigh's quotient is capable of getting an accurate estimation of the lowest natural frequency. The practice of using the static displacement vector as a trial vector is valid as the static displacement vector tends to resemble the lowest vibration mode.
Stiffness depends upon material properties and geometry. The stiffness of a structural element of a given material is the product of the material's Young's modulus and the element's second moment of area. Stiffness is measured in force per unit length (newtons per millimetre or N/mm), and is equivalent to the 'force constant' in Hooke's Law.
It is widely used in numerical evaluation of the dynamic response of structures and solids such as in finite element analysis to model dynamic systems. The method is named after Nathan M. Newmark , [ 1 ] former Professor of Civil Engineering at the University of Illinois at Urbana–Champaign , who developed it in 1959 for use in structural ...