enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parity (physics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(physics)

    For example, the isotopes of oxygen include 17 O(5/2+), meaning that the spin is 5/2 and the parity is even. The shell model explains this because the first 16 nucleons are paired so that each pair has spin zero and even parity, and the last nucleon is in the 1d 5/2 shell, which has even parity since ℓ = 2 for a d orbital. [10]

  3. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    The spin of a charged particle is associated with a magnetic dipole moment with a g-factor that differs from 1. (In the classical context, this would imply the internal charge and mass distributions differing for a rotating object. [4]) The conventional definition of the spin quantum number is s = ⁠ n / 2 ⁠, where n can be any non-negative ...

  4. Multipolarity of gamma radiation - Wikipedia

    en.wikipedia.org/wiki/Multipolarity_of_gamma...

    An example: in the simplified decay scheme of 60 Co above, the angular momenta and the parities of the various states are shown (A plus sign means even parity, a minus sign means odd parity). Consider the 1.33 MeV transition to the ground state. Clearly, this must carry away an angular momentum of 2, without change of parity.

  5. Spin–orbit interaction - Wikipedia

    en.wikipedia.org/wiki/Spin–orbit_interaction

    The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.

  6. Selection rule - Wikipedia

    en.wikipedia.org/wiki/Selection_rule

    The wave function of a single electron is the product of a space-dependent wave function and a spin wave function. Spin is directional and can be said to have odd parity. It follows that transitions in which the spin "direction" changes are forbidden. In formal terms, only states with the same total spin quantum number are "spin-allowed". [5]

  7. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    That is, the resulting spin operators for higher spin systems in three spatial dimensions, for arbitrarily large j, can be calculated using this spin operator and ladder operators. They can be found in Rotation group SO(3) § A note on Lie algebras. The analog formula to the above generalization of Euler's formula for Pauli matrices, the group ...

  8. Dirac equation - Wikipedia

    en.wikipedia.org/wiki/Dirac_equation

    In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry.

  9. Beta decay transition - Wikipedia

    en.wikipedia.org/wiki/Beta_decay_transition

    The Gamow–Teller transition is a pseudovector transition, that is, the selection rules for beta decay caused by such a transition involve no parity change of the nuclear state. [2] The spin of the parent nucleus can either remain unchanged or change by ±1. However, unlike the Fermi transition, transitions from spin 0 to spin 0 are excluded.