enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gibbs sampling - Wikipedia

    en.wikipedia.org/wiki/Gibbs_sampling

    Gibbs sampling is named after the physicist Josiah Willard Gibbs, in reference to an analogy between the sampling algorithm and statistical physics.The algorithm was described by brothers Stuart and Donald Geman in 1984, some eight decades after the death of Gibbs, [1] and became popularized in the statistics community for calculating marginal probability distribution, especially the posterior ...

  3. Bayesian inference using Gibbs sampling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference_using...

    Bayesian inference using Gibbs sampling (BUGS) is a statistical software for performing Bayesian inference using Markov chain Monte Carlo (MCMC) methods. It was developed by David Spiegelhalter at the Medical Research Council Biostatistics Unit in Cambridge in 1989 and released as free software in 1991.

  4. Markov chain Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

    Gibbs sampling can be viewed as a special case of Metropolis–Hastings algorithm with acceptance rate uniformly equal to 1. When drawing from the full conditional distributions is not straightforward other samplers-within-Gibbs are used (e.g., see [7] [8]). Gibbs sampling is popular partly because it does not require any 'tuning'.

  5. Probit model - Wikipedia

    en.wikipedia.org/wiki/Probit_model

    Gibbs sampling of a probit model is possible with the introduction of normally distributed latent variables z, which are observed as 1 if positive and 0 otherwise. This approach was introduced in Albert and Chib (1993), [5] which demonstrated how Gibbs sampling could be applied to binary and polychotomous response models within a Bayesian ...

  6. Just another Gibbs sampler - Wikipedia

    en.wikipedia.org/wiki/Just_another_Gibbs_sampler

    Just another Gibbs sampler (JAGS) is a program for simulation from Bayesian hierarchical models using Markov chain Monte Carlo (MCMC), developed by Martyn Plummer. JAGS has been employed for statistical work in many fields, for example ecology, management, and genetics. [2] [3] [4]

  7. Probabilistic programming - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_programming

    The language for WinBUGS was implemented to perform Bayesian computation using Gibbs Sampling and related algorithms. Although implemented in a relatively unknown programming language (Component Pascal), this language permits Bayesian inference for a wide variety of statistical models using a flexible computational approach. The same BUGS ...

  8. Approximate Bayesian computation - Wikipedia

    en.wikipedia.org/wiki/Approximate_Bayesian...

    Open source programs for various ABC algorithms including rejection sampling, MCMC without likelihood, a particle-based sampler, and ABC-GLM. Compatibility with most simulation and summary statistics computation programs. [77] msBayes: Open source software package consisting of several C and R programs that are run with a Perl "front-end".

  9. Stuart Geman - Wikipedia

    en.wikipedia.org/wiki/Stuart_Geman

    Particularly notable works include: the development of the Gibbs sampler, proof of convergence of simulated annealing, [8] [9] foundational contributions to the Markov random field ("graphical model") approach to inference in vision and machine learning, [3] [10] and work on the compositional foundations of vision and cognition.