Search results
Results from the WOW.Com Content Network
Metabolic alkalosis is an acid-base disorder in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate (HCO − 3), or alternatively a direct result of increased bicarbonate concentrations.
Accordingly, measurement of base excess is defined, under a standardized pressure of carbon dioxide, by titrating back to a standardized blood pH of 7.40. The predominant base contributing to base excess is bicarbonate. Thus, a deviation of serum bicarbonate from the reference range is ordinarily mirrored by a deviation in base excess.
Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance.Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidneys to excrete excess acids. [5]
In acidaemia, the bicarbonate levels rise, so that they can neutralize the excess acid, while the contrary happens when there is alkalaemia. Thus when an arterial blood gas test reveals, for example, an elevated bicarbonate, the problem has been present for a couple of days, and metabolic compensation took place over a blood acidaemia problem.
Bicarbonate concentration is also further regulated by renal compensation, the process by which the kidneys regulate the concentration of bicarbonate ions by secreting H + ions into the urine while, at the same time, reabsorbing HCO − 3 ions into the blood plasma, or vice versa, depending on whether the plasma pH is falling or rising ...
The version with seven tests is often referred to by medical professionals in the United States as the "CHEM-7", or "SMA-7" (Sequential Multiple Analysis-7). [1] The seven parts of a CHEM-7 are tests for: Four electrolytes: sodium (Na +) [2] potassium (K +) [3] chloride (Cl −) [4] bicarbonate (HCO 3 −) or CO 2 [5] blood urea (BU), blood ...
The result can be detected with high levels of lactate and low levels of bicarbonate. This is usually considered the result of illness but also results from strenuous exercise. The effect on pH is moderated by the presence of respiratory compensation. Lactic acidosis is usually the result of tissue hypoxia which is not the same as arterial hypoxia.
In chronic respiratory acidosis, the PaCO 2 is elevated above the upper limit of the reference range, with a normal blood pH (7.35 to 7.45) or near-normal pH secondary to renal compensation and an elevated serum bicarbonate (HCO 3 − >30 mEq/L). [citation needed]