enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Williamson ether synthesis - Wikipedia

    en.wikipedia.org/wiki/Williamson_ether_synthesis

    The Williamson ether synthesis is an organic reaction, forming an ether from an organohalide and a deprotonated alcohol . This reaction was developed by Alexander Williamson in 1850. [ 2 ] Typically it involves the reaction of an alkoxide ion with a primary alkyl halide via an S N 2 reaction .

  3. Alexander William Williamson - Wikipedia

    en.wikipedia.org/wiki/Alexander_William_Williamson

    Alexander Williamson. Williamson is credited for his research on the formation of unsymmetrical ethers by the interaction of an alkoxide with a haloalkane, known as the Williamson ether synthesis. He regarded ethers and alcohols as substances analogous to and built up on the same type as water, and he further introduced the water-type as a ...

  4. Template reaction - Wikipedia

    en.wikipedia.org/wiki/Template_reaction

    18-Crown-6 can be synthesized by the Williamson ether synthesis using potassium ion as the template cation. Structure of nickel-aquo nitrate complex of the ligand derived from the templated trimerization of 2-aminobenzaldehyde. [5] The phosphorus analogue of an aza crown can be prepared by a template reaction. [6]

  5. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    The two main mechanisms were the S N 1 reaction and the S N 2 reaction, where S stands for substitution, N stands for nucleophilic, and the number represents the kinetic order of the reaction. [4] In the S N 2 reaction, the addition of the nucleophile and the elimination of leaving group take place simultaneously (i.e. a concerted reaction).

  6. Elimination reaction - Wikipedia

    en.wikipedia.org/wiki/Elimination_reaction

    An elimination reaction is a type of organic reaction in which two substituents are removed from a molecule in either a one- or two-step mechanism. [2] The one-step mechanism is known as the E2 reaction, and the two-step mechanism is known as the E1 reaction. The numbers refer not to the number of steps in the mechanism, but rather to the ...

  7. Phenol ether - Wikipedia

    en.wikipedia.org/wiki/Phenol_ether

    Usually phenol ethers are synthesized through the condensation of phenol and an organic alcohol; however, other known reactions regarding the synthesis of ethers can be applied to phenol ethers as well. Anisole (C 6 H 5 OCH 3) is the simplest phenol ether, and is a versatile precursor for perfumes and pharmaceuticals. [1]

  8. Cross-coupling reaction - Wikipedia

    en.wikipedia.org/wiki/Cross-coupling_reaction

    The leaving group X in the organic partner is usually a halide, although triflate, tosylate, pivalate esters, and other pseudohalides have been used. [15] Chloride is an ideal group due to the low cost of organochlorine compounds.

  9. SN2 reaction - Wikipedia

    en.wikipedia.org/wiki/SN2_reaction

    For example, the synthesis of macrocidin A, a fungal metabolite, involves an intramolecular ring closing step via an S N 2 reaction with a phenoxide group as the nucleophile and a halide as the leaving group, forming an ether. [2] Reactions such as this, with an alkoxide as the nucleophile, are known as the Williamson ether synthesis.