enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    Fully connected layers connect every neuron in one layer to every neuron in another layer. It is the same as a traditional multilayer perceptron neural network (MLP). The flattened matrix goes through a fully connected layer to classify the images.

  3. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable.

  4. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    The neurons are typically organized into multiple layers, especially in deep learning. Neurons of one layer connect only to neurons of the immediately preceding and immediately following layers. The layer that receives external data is the input layer. The layer that produces the ultimate result is the output layer.

  5. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    A fully connected RNN with 4 neurons. Fully recurrent neural networks (FRNN) connect the outputs of all neurons to the inputs of all neurons. In other words, it is a fully connected network. This is the most general neural network topology, because all other topologies can be represented by setting some connection weights to zero to simulate ...

  6. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...

  7. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net is a convolutional neural network that was developed for image segmentation. [1] The network is based on a fully convolutional neural network [2] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation.

  8. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    100-long vector attention weight. These are "soft" weights which changes during the forward pass, in contrast to "hard" neuronal weights that change during the learning phase. A Attention module – this can be a dot product of recurrent states, or the query-key-value fully-connected layers. The output is a 100-long vector w. H

  9. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    In neuroscience, a biological neural network is a physical structure found in brains and complex nervous systems – a population of nerve cells connected by synapses. In machine learning, an artificial neural network is a mathematical model used to approximate nonlinear functions.