enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Set packing - Wikipedia

    en.wikipedia.org/wiki/Set_packing

    Cygan [4] presented an algorithm that, for any ε>0, attains a (k+1+ε)/3 approximation. The run-time is polynomial in the number of sets and elements, but doubly-exponential in 1/ε. Furer and Yu [5] presented an algorithm that attains the same approximation, but with run-time singly-exponential in 1/ε.

  3. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The variant where variables are required to be 0 or 1, called zero-one linear programming, and several other variants are also NP-complete [2] [3]: MP1 Some problems related to Job-shop scheduling; Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9 Some problems related to Multiprocessor scheduling

  4. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    The set of NP-complete problems is often denoted by NP-C or NPC. Although a solution to an NP-complete problem can be verified "quickly", there is no known way to find a solution quickly. That is, the time required to solve the problem using any currently known algorithm increases rapidly as the size of the problem grows.

  5. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of n {\displaystyle n} items numbered from 1 up to n {\displaystyle n} , each with a weight w i {\displaystyle w_{i}} and a value v i {\displaystyle v_{i}} , along with a maximum weight capacity ...

  6. Bin packing problem - Wikipedia

    en.wikipedia.org/wiki/Bin_packing_problem

    The bin packing problem is strongly NP-complete.This can be proven by reducing the strongly NP-complete 3-partition problem to bin packing. [8]Furthermore, there can be no approximation algorithm with absolute approximation ratio smaller than unless =.

  7. Karp's 21 NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/Karp's_21_NP-complete_problems

    In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...

  8. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem.The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.

  9. Graph isomorphism problem - Wikipedia

    en.wikipedia.org/wiki/Graph_isomorphism_problem

    It is shown that finding an isomorphism for n-vertex graphs is equivalent to finding an n-clique in an M-graph of size n 2. This fact is interesting because the problem of finding a clique of order (1 − ε)n in a M-graph of size n 2 is NP-complete for arbitrarily small positive ε. [43] The problem of homeomorphism of 2-complexes. [44]