Search results
Results from the WOW.Com Content Network
Insensitive nuclei enhancement by polarization transfer (INEPT) is a signal enhancement method used in NMR spectroscopy. It involves the transfer of nuclear spin polarization from spins with large Boltzmann population differences to nuclear spins of interest with lower Boltzmann population differences. [1]
The HSQC experiment is a highly sensitive 2D-NMR experiment and was first described in a 1 H— 15 N system, but is also applicable to other nuclei such as 1 H— 13 C and 1 H— 31 P. The basic scheme of this experiment involves the transfer of magnetization on the proton to the second nucleus, which may be 15 N, 13 C or 31 P, via an INEPT ...
When electron spin polarization deviates from its thermal equilibrium value, polarization transfers between electrons and nuclei can occur spontaneously through electron-nuclear cross relaxation or spin-state mixing among electrons and nuclei. For example, polarization transfer is spontaneous after a homolysis chemical reaction.
Graphical representation of the INEPT NMR pulse sequence. INEPT is utilized often to improve 15 N resolution because it can accommodate negative gyromagnetic ratios, increases Boltzmann polarization, and decreases T 1 relaxation. [3] Insensitive nuclei enhanced by polarization transfer (INEPT) is a signal
The nuclear Overhauser effect (NOE) is the transfer of nuclear spin polarization from one population of spin-active nuclei (e.g. 1 H, 13 C, 15 N etc.) to another via cross-relaxation.
A neuron receives signals from neighboring cells through branched, cellular extensions called dendrites.The neuron then propagates an electrical signal down a specialized axon extension from the basal pole to the synapse, where neurotransmitters are released to propagate the signal to another neuron or effector cell (e.g., muscle or gland).
Magnetization is then transferred from the proton to the heteronucleus through a one-bond scalar coupling (J-coupling), ensuring that only directly bonded nuclei participate in the transfer. Subsequently, the system evolves during a period called t 1 , and the magnetization is transferred back from the heteronuclear to the proton.
A more specific example of this case is presented in the section Chemical Exchange Magnetization transfer. In either case, magnetization transfer techniques probe the dynamic relationship between two or more distinguishable nuclei populations, in so far as energy exchange between the populations can be induced and measured in an idealized NMR ...