enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chebyshev function - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_function

    The Chebyshev functions, especially the second one ψ (x), are often used in proofs related to prime numbers, because it is typically simpler to work with them than with the prime-counting function, π (x) (see the exact formula below.) Both Chebyshev functions are asymptotic to x, a statement equivalent to the prime number theorem.

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  4. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    Perhaps the best-known value of the gamma function at a non-integer argument is =, which can be found by setting = in the reflection or duplication formulas, by using the relation to the beta function given below with = =, or simply by making the substitution = in the integral definition of the gamma function, resulting in a Gaussian integral.

  5. Logarithmic norm - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_norm

    Thus differential operators too can have logarithmic norms, allowing the use of the logarithmic norm both in algebra and in analysis. The modern, extended theory therefore prefers a definition based on inner products or duality. Both the operator norm and the logarithmic norm are then associated with extremal values of quadratic forms as follows:

  6. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    A loglog plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).

  7. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    The exponential exp ψ(x) is approximately x − ⁠ 1 / 2 ⁠ for large x, but gets closer to x at small x, approaching 0 at x = 0. For x < 1, we can calculate limits based on the fact that between 1 and 2, ψ(x) ∈ [−γ, 1 − γ], so

  8. Iterated logarithm - Wikipedia

    en.wikipedia.org/wiki/Iterated_logarithm

    Demonstrating log* 4 = 2 for the base-e iterated logarithm. The value of the iterated logarithm can be found by "zig-zagging" on the curve y = log b (x) from the input n, to the interval [0,1]. In this case, b = e. The zig-zagging entails starting from the point (n, 0) and iteratively moving to (n, log b (n) ), to (0, log b (n) ), to (log b (n ...

  9. Logarithm of a matrix - Wikipedia

    en.wikipedia.org/wiki/Logarithm_of_a_matrix

    The exponential of a matrix A is defined by =!. Given a matrix B, another matrix A is said to be a matrix logarithm of B if e A = B.. Because the exponential function is not bijective for complex numbers (e.g. = =), numbers can have multiple complex logarithms, and as a consequence of this, some matrices may have more than one logarithm, as explained below.