enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Darcy–Weisbach equation. In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  3. Process duct work - Wikipedia

    en.wikipedia.org/wiki/Process_Duct_Work

    Round cement plant duct stiffeners are sometimes about 5% duct plate weight. Rectangular cement plant duct stiffeners are 15 to 20% times duct plate weight. Power plant ductwork is often larger. Power plant ductwork is usually rectangular, with stiffener weights of 50% (or more) times duct plate weight.

  4. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    For calculation involving flow in non-circular ducts, the hydraulic diameter can be substituted for the diameter of a circular duct, with reasonable accuracy, if the aspect ratio AR of the duct cross-section remains in the range ⁠ 1 / 4 ⁠ < AR < 4. [11]

  5. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Hagen–Poiseuille equation. In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.

  6. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    Darcy friction factor formulae. In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow. The Darcy friction factor is also known as ...

  7. Characteristic length - Wikipedia

    en.wikipedia.org/wiki/Characteristic_length

    In those cases, the characteristic length is the diameter of the pipe or, in case of non-circular tubes, its hydraulic diameter : Where is the cross-sectional area of the pipe and is its wetted perimeter. It is defined such that it reduces to a circular diameter of D for circular pipes. For flow through a square duct with a side length of a ...

  8. Ducted fan - Wikipedia

    en.wikipedia.org/wiki/Ducted_fan

    Ducted fans are used for propulsion or direct lift in many types of vehicle including aeroplanes, airships, hovercraft, and powered lift VTOL aircraft. The high-bypass turbofan engines used on many modern airliners is an example of a very successful and popular use of ducted fan design. The duct increases thrust efficiency by up to 90% in most ...

  9. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    Nusselt number. In thermal fluid dynamics, the Nusselt number (Nu, after Wilhelm Nusselt [1]: 336 ) is the ratio of total heat transfer to conductive heat transfer at a boundary in a fluid. Total heat transfer combines conduction and convection. Convection includes both advection (fluid motion) and diffusion (conduction).