Search results
Results from the WOW.Com Content Network
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
This odd behavior is caused by an implicit conversion of i_value to float when it is compared with f_value. The conversion causes loss of precision, which makes the values equal before the comparison. Important takeaways: float to int causes truncation, i.e., removal of the fractional part. double to float causes rounding of digit.
A property of the single- and double-precision formats is that their encoding allows one to easily sort them without using floating-point hardware, as if the bits represented sign-magnitude integers, although it is unclear whether this was a design consideration (it seems noteworthy that the earlier IBM hexadecimal floating-point representation ...
Fast Half Float Conversions; Analog Devices variant (four-bit exponent) C source code to convert between IEEE double, single, and half precision can be found here; Java source code for half-precision floating-point conversion; Half precision floating point for one of the extended GCC features
The range of a double-double remains essentially the same as the double-precision format because the exponent has still 11 bits, [4] significantly lower than the 15-bit exponent of IEEE quadruple precision (a range of 1.8 × 10 308 for double-double versus 1.2 × 10 4932 for binary128).
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
The IEEE standard stores the sign, exponent, and significand in separate fields of a floating point word, each of which has a fixed width (number of bits). The two most commonly used levels of precision for floating-point numbers are single precision and double precision.
If, however, intermediate computations are all performed in extended precision (e.g. by setting line [1] to C99 long double), then up to full precision in the final double result can be maintained. [nb 13] Alternatively, a numerical analysis of the algorithm reveals that if the following non-obvious change to line [2] is made: