Search results
Results from the WOW.Com Content Network
The Kneser graph K(n, 1) is the complete graph on n vertices. The Kneser graph K(n, 2) is the complement of the line graph of the complete graph on n vertices. The Kneser graph K(2n − 1, n − 1) is the odd graph O n; in particular O 3 = K(5, 2) is the Petersen graph (see top right figure). The Kneser graph O 4 = K(7, 3), visualized on the right.
If and only if two graph states are locally Clifford equivalent, one graph can be converted into the other by a sequence of so-called "local complementations". [3] This gives a useful tool for studying local Clifford equivalence by a simple graph-manipulation rule and corresponding equivalence classes of graph states have been studied in Refs.
The 1980 monograph Spectra of Graphs [16] by Cvetković, Doob, and Sachs summarised nearly all research to date in the area. In 1988 it was updated by the survey Recent Results in the Theory of Graph Spectra. [17] The 3rd edition of Spectra of Graphs (1995) contains a summary of the further recent contributions to the subject. [15]
Every graph is the line graph of some hypergraph, but, given a fixed edge size k, not every graph is a line graph of some k-uniform hypergraph. A main problem is to characterize those that are, for each k ≥ 3. A hypergraph is linear if each pair of hyperedges intersects in at most one vertex. Every graph is the line graph, not only of some ...
graph minors, smaller graphs obtained from subgraphs by arbitrary edge contractions. The set of structures that are forbidden from belonging to a given graph family can also be called an obstruction set for that family. Forbidden graph characterizations may be used in algorithms for testing whether
A complete bipartite graph of K 4,7 showing that Turán's brick factory problem with 4 storage sites (yellow spots) and 7 kilns (blue spots) requires 18 crossings (red dots) For any k, K 1,k is called a star. [2] All complete bipartite graphs which are trees are stars. The graph K 1,3 is called a claw, and is used to define the claw-free graphs ...
The n × n square rook's graph, i.e., the line graph of a balanced complete bipartite graph K n,n, is an srg(n 2, 2n − 2, n − 2, 2). The parameters for n = 4 coincide with those of the Shrikhande graph, but the two graphs are not isomorphic.
where s max is the maximum value of s(H) for H in the set of all graphs with degree distribution identical to that of G. This gives a metric between 0 and 1, where a graph G with small S(G) is "scale-rich", and a graph G with S(G) close to 1 is "scale-free".