Search results
Results from the WOW.Com Content Network
Radix sort is an algorithm that sorts numbers by processing individual digits. n numbers consisting of k digits each are sorted in O(n · k) time. Radix sort can process digits of each number either starting from the least significant digit (LSD) or starting from the most significant digit (MSD). The LSD algorithm first sorts the list by the ...
In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. [1]
A bidirectional variant of selection sort (called double selection sort or sometimes cocktail sort due to its similarity to cocktail shaker sort) finds both the minimum and maximum values in the list in every pass. This requires three comparisons per two items (a pair of elements is compared, then the greater is compared to the maximum and the ...
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
Finally, the sorting method has a simple parallel implementation, unlike the Fisher–Yates shuffle, which is sequential. A variant of the above method that has seen some use in languages that support sorting with user-specified comparison functions is to shuffle a list by sorting it with a comparison function that returns random values.
In computing, natural sort order (or natural sorting) is the ordering of strings in alphabetical order, except that multi-digit numbers are treated atomically, i.e., as if they were a single character. Natural sort order has been promoted as being more human-friendly ("natural") than machine-oriented, pure alphabetical sort order.
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.
That value is then popped off, and its leaf is refilled with 7, the next value in the input list. The games on the way to the top are replayed like in the previous section about replacement selection. The next element that is removed is 3. Starting from the next value in the list, 6, the games are replayed up until the root.