enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Erdős–Straus conjecture - Wikipedia

    en.wikipedia.org/wiki/Erdős–Straus_conjecture

    As with fractions of the form , it has been conjectured that every fraction (for >) can be expressed as a sum of three positive unit fractions. A generalized version of the conjecture states that, for any positive k {\displaystyle k} , all but finitely many fractions k n {\displaystyle {\tfrac {k}{n}}} can be expressed as a sum of three ...

  3. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    First multiply the quarters by 47, the result 94 is written into the first workspace. Next, multiply cwt 12*47 = (2 + 10)*47 but don't add up the partial results (94, 470) yet. Likewise multiply 23 by 47 yielding (141, 940). The quarters column is totaled and the result placed in the second workspace (a trivial move in this case).

  4. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  5. Stack Overflow - Wikipedia

    en.wikipedia.org/wiki/Stack_Overflow

    Stack Overflow is a question-and-answer website for computer programmers. It is the flagship site of the Stack Exchange Network . [ 2 ] [ 3 ] [ 4 ] It was created in 2008 by Jeff Atwood and Joel Spolsky .

  6. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Generalization to fractions is by multiplying the numerators and denominators, respectively: = (). This gives the area of a rectangle A B {\displaystyle {\frac {A}{B}}} high and C D {\displaystyle {\frac {C}{D}}} wide, and is the same as the number of things in an array when the rational numbers happen to be whole numbers.

  7. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives the same result as the full matrix multiplication on the left.

  8. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.

  9. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative , [ 10 ] even when the product remains defined after changing the order of the factors.