enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. [1] Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science ...

  3. Data modeling - Wikipedia

    en.wikipedia.org/wiki/Data_modeling

    Data modeling in software engineering is the process of creating a data model for an information system by applying certain formal techniques. It may be applied as part of broader Model-driven engineering (MDE) concept.

  4. Data-driven model - Wikipedia

    en.wikipedia.org/wiki/Data-driven_model

    Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]

  5. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, although they do belong to the overall KDD process as additional steps. The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the ...

  6. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive model solutions can be considered a type of data mining technology. The models can analyze both historical and current data and generate a model in order to predict potential future outcomes. [14] Regardless of the methodology used, in general, the process of creating predictive models involves the same steps.

  7. Analytics - Wikipedia

    en.wikipedia.org/wiki/Analytics

    Data analysis focuses on the process of examining past data through business understanding, data understanding, data preparation, modeling and evaluation, and deployment. [8] It is a subset of data analytics, which takes multiple data analysis processes to focus on why an event happened and what may happen in the future based on the previous data.

  8. Trend periodic nonstationary processes - Wikipedia

    en.wikipedia.org/wiki/Trend_periodic_non...

    Trend periodic non-stationary processes (or trend cyclostationary processes) are a type of cyclostationary process that exhibits both periodic behavior and a statistical trend. The trend can be linear or nonlinear, and it can result from systematic changes in the data over time. A cyclostationary process can be formed by removing the trend ...

  9. Online analytical processing - Wikipedia

    en.wikipedia.org/wiki/Online_analytical_processing

    It is very compact for low dimension data sets. Array models provide natural indexing. Effective data extraction achieved through the pre-structuring of aggregated data. Disadvantages of MOLAP. Within some MOLAP systems the processing step (data load) can be quite lengthy, especially on large data volumes.