Search results
Results from the WOW.Com Content Network
In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles .
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...
This is a list of useful examples in general topology, a field of mathematics. Alexandrov topology; Cantor space; Co-kappa topology Cocountable topology; Cofinite topology; Compact-open topology; Compactification; Discrete topology; Double-pointed cofinite topology; Extended real number line; Finite topological space; Hawaiian earring; Hilbert cube
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.
In this definition the faces are the orbits of F = <r 0, r 1 >, edges are the orbits of E = <r 0, r 2 >, and vertices are the orbits of V = <r 1, r 2 >. More abstractly, the automorphism group of any regular map is the non-degenerate, homomorphic image of a <2,m,n>- triangle group .
Topological geometry deals with incidence structures consisting of a point set and a family of subsets of called lines or circles etc. such that both and carry a topology and all geometric operations like joining points by a line or intersecting lines are continuous.
Let M be a topological space.A chart (U, φ) on M consists of an open subset U of M, and a homeomorphism φ from U to an open subset of some Euclidean space R n.Somewhat informally, one may refer to a chart φ : U → R n, meaning that the image of φ is an open subset of R n, and that φ is a homeomorphism onto its image; in the usage of some authors, this may instead mean that φ : U → R n ...
This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. Thus, we may regard a smooth structure as a maximal smooth atlas and vice versa. In general, computations with the maximal atlas of a manifold are rather unwieldy.