Search results
Results from the WOW.Com Content Network
In electrical engineering, admittance is a measure of how easily a circuit or device will allow a current to flow. It is defined as the reciprocal of impedance , analogous to how conductance and resistance are defined.
Admittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks.
The nodal admittance matrix of a power system is a form of Laplacian matrix of the nodal admittance diagram of the power system, which is derived by the application of Kirchhoff's laws to the admittance diagram of the power system. Starting from the single line diagram of a power system, the nodal admittance diagram is derived by:
In electrical engineering, susceptance (B) is the imaginary part of admittance (Y = G + jB), where the real part is conductance (G). The reciprocal of admittance is impedance (Z = R + jX), where the imaginary part is reactance (X) and the real part is resistance (R). In SI units, susceptance is measured in siemens (S).
In electrical engineering, admittance is a measure of how easily a circuit or device will allow a current to flow. It is defined as the reciprocal of impedance. The SI unit of admittance is the siemens (symbol S); the older, synonymous unit is mho, and its symbol is ℧ (an upside-down uppercase omega Ω).
Foster's theorem applies equally to the admittance of a network, that is the susceptance (imaginary part of admittance) of a passive, lossless one-port monotonically increases with frequency. This result may seem counterintuitive since admittance is the reciprocal of impedance, but is easily proved. If the impedance is =
Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.
The input admittance (the reciprocal of impedance) is a measure of the load network's propensity to draw current. The source network is the portion of the network that transmits power , and the load network is the portion of the network that consumes power.