Search results
Results from the WOW.Com Content Network
a Calorimeter in CERN. In experimental particle physics, a calorimeter is a type of detector that measures the energy of particles. Particles enter the calorimeter and initiate a particle shower in which their energy is deposited in the calorimeter, collected, and measured. The energy may be measured in its entirety, requiring total containment ...
The extended barrel section of the hadronic calorimeter. The calorimeters [1] [2] [3] are situated outside the solenoidal magnet that surrounds the Inner Detector. Their purpose is to measure the energy from particles by absorbing it. There are two basic calorimeter systems: an inner electromagnetic calorimeter and an outer hadronic calorimeter ...
The end-cap calorimeters consisted of lead/scintillator samplings for the electromagnetic part, and iron/scintillator for the hadronic part. [11] The performance and granularity of the new calorimeters were set to match the central calorimeter, which was of importance for the triggering system.
An example is a coffee-cup calorimeter, which is constructed from two nested Styrofoam cups, providing insulation from the surroundings, and a lid with two holes, allowing insertion of a thermometer and a stirring rod. The inner cup holds a known amount of a solvent, usually water, that absorbs the heat from the reaction.
An example detector that uses a shashlik electromagnetic calorimeter is the LHCb detector. [2] This type of calorimeter was likely named after the shashlik, a popular form of shish kebab sold by street vendors in the former Soviet Union, by the Russian and Ukrainian scientists who first proposed it. [3]
For example, an electron is charged and interacts electromagnetically, so it is tracked by the tracker and then deposits all of its energy in the (electromagnetic) calorimeter. By contrast, a photon is neutral and interacts electromagnetically, so it deposits its energy in the calorimeter without leaving a track.
Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequencies between 300 MHz and 300 GHz, broadly construed.
Calorimetry requires that a reference material that changes temperature have known definite thermal constitutive properties. The classical rule, recognized by Clausius and Kelvin, is that the pressure exerted by the calorimetric material is fully and rapidly determined solely by its temperature and volume; this rule is for changes that do not involve phase change, such as melting of ice.