Ad
related to: brain tumor detection kaggle algorithm in machine learning problems under neutrosophic sets
Search results
Results from the WOW.Com Content Network
Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. [1] High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to ...
Bootstrap aggregating, also called bagging (from bootstrap aggregating) or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms. It also reduces variance and overfitting.
A number of online neuroscience databases are available which provide information regarding gene expression, neurons, macroscopic brain structure, and neurological or psychiatric disorders. Some databases contain descriptive and numerical data, some to brain function, others offer access to 'raw' imaging data, such as postmortem brain sections ...
Every data mining task has the problem of parameters. Every parameter influences the algorithm in specific ways. For DBSCAN, the parameters ε and minPts are needed. The parameters must be specified by the user. Ideally, the value of ε is given by the problem to solve (e.g. a physical distance), and minPts is then the desired minimum cluster ...
A row of slot machines in Las Vegas. In probability theory and machine learning, the multi-armed bandit problem (sometimes called the K-[1] or N-armed bandit problem [2]) is a problem in which a decision maker iteratively selects one of multiple fixed choices (i.e., arms or actions) when the properties of each choice are only partially known at the time of allocation, and may become better ...
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.
The winnow algorithm [1] is a technique from machine learning for learning a linear classifier from labeled examples. It is very similar to the perceptron algorithm.However, the perceptron algorithm uses an additive weight-update scheme, while Winnow uses a multiplicative scheme that allows it to perform much better when many dimensions are irrelevant (hence its name winnow).
Most machine learning techniques are mostly designed to work on specific problem sets, under the assumption that the training and test data are generated from the same statistical distribution . However, this assumption is often dangerously violated in practical high-stake applications, where users may intentionally supply fabricated data that ...
Ad
related to: brain tumor detection kaggle algorithm in machine learning problems under neutrosophic sets