enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA condensation - Wikipedia

    en.wikipedia.org/wiki/DNA_condensation

    Usually, DNA condensation is defined as "the collapse of extended DNA chains into compact, orderly particles containing only one or a few molecules". [3] This definition applies to many situations in vitro and is also close to the definition of DNA condensation in bacteria as "adoption of relatively concentrated, compact state occupying a ...

  3. Histone acetylation and deacetylation - Wikipedia

    en.wikipedia.org/wiki/Histone_acetylation_and_de...

    The histone tails insert themselves in the minor grooves of the DNA and extend through the double helix, [1] which leaves them open for modifications involved in transcriptional activation. [3] Acetylation has been closely associated with increases in transcriptional activation while deacetylation has been linked with transcriptional deactivation.

  4. Histone - Wikipedia

    en.wikipedia.org/wiki/Histone

    [1] [2] Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each ...

  5. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    The DNA double helix biopolymer of nucleic acid is held together by nucleotides which base pair together. [3] In B-DNA, the most common double helical structure found in nature, the double helix is right-handed with about 10–10.5 base pairs per turn. [4] The double helix structure of DNA contains a major groove and minor groove.

  6. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_tertiary...

    The double helix is the dominant tertiary structure for biological DNA, and is also a possible structure for RNA. Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [2]

  7. Chromatin - Wikipedia

    en.wikipedia.org/wiki/Chromatin

    In nature, DNA can form three structures, A-, B-, and Z-DNA. A- and B-DNA are very similar, forming right-handed helices, whereas Z-DNA is a left-handed helix with a zig-zag phosphate backbone. Z-DNA is thought to play a specific role in chromatin structure and transcription because of the properties of the junction between B- and Z-DNA.

  8. Triple-stranded DNA - Wikipedia

    en.wikipedia.org/wiki/Triple-stranded_DNA

    Triple-stranded DNA (also known as H-DNA or Triplex-DNA) is a DNA structure in which three oligonucleotides wind around each other and form a triple helix. In triple-stranded DNA, the third strand binds to a B-form DNA (via Watson–Crick base-pairing ) double helix by forming Hoogsteen base pairs or reversed Hoogsteen hydrogen bonds.

  9. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    B-DNA is the most common form of DNA in vivo and is a more narrow, elongated helix than A-DNA. Its wide major groove makes it more accessible to proteins. On the other hand, it has a narrow minor groove. B-DNA's favored conformations occur at high water concentrations; the hydration of the minor groove appears to favor B-DNA.