enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum chemistry composite methods - Wikipedia

    en.wikipedia.org/wiki/Quantum_chemistry...

    The T1 procedure reproduces these values with mean absolute and RMS errors of 1.8 and 2.5 kJ/mol, respectively. T1 reproduces experimental heats of formation for a set of 1805 diverse organic molecules from the NIST thermochemical database [14] with mean absolute and RMS errors of 8.5 and 11.5 kJ/mol, respectively.

  3. Computational chemistry - Wikipedia

    en.wikipedia.org/wiki/Computational_chemistry

    Chemical accuracy is the accuracy required to make realistic chemical predictions and is generally considered to be 1 kcal/mol or 4 kJ/mol. To reach that accuracy in an economic way, it is necessary to use a series of post-Hartree–Fock methods and combine the results. These methods are called quantum chemistry composite methods. [56]

  4. Hartree equation - Wikipedia

    en.wikipedia.org/wiki/Hartree_equation

    In order to solve the equation of an electron in a spherical potential, Hartree first introduced atomic units to eliminate physical constants. Then he converted the Laplacian from Cartesian to spherical coordinates to show that the solution was a product of a radial function () / and a spherical harmonic with an angular quantum number , namely = (/) (,).

  5. Hartree - Wikipedia

    en.wikipedia.org/wiki/Hartree

    The hartree (symbol: E h), also known as the Hartree energy, is the unit of energy in the atomic units system, named after the British physicist Douglas Hartree. Its CODATA recommended value is E h = 4.359 744 722 2060 (48) × 10 −18 J ‍ [ 1 ] = 27.211 386 245 981 (30) eV .

  6. Hartree–Fock method - Wikipedia

    en.wikipedia.org/wiki/Hartree–Fock_method

    In 1927, D. R. Hartree introduced a procedure, which he called the self-consistent field method, to calculate approximate wave functions and energies for atoms and ions. [4] Hartree sought to do away with empirical parameters and solve the many-body time-independent Schrödinger equation from fundamental physical principles, i.e., ab initio.

  7. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...

  8. Water (data page) - Wikipedia

    en.wikipedia.org/wiki/Water_(data_page)

    51.1 kJ/mol Std entropy change of sublimation at 273.15 K, 1 bar, Δ sub S ~144 J/(mol·K) Molal freezing point constant: −1.858 °C kg/mol Molal boiling point constant: 0.512 °C kg/mol Solid properties Std enthalpy change of formation, Δ f H o solid: −291.83 kJ/mol Standard molar entropy, S o solid: 41 J/(mol K) Heat capacity, c p: 12.2 ...

  9. Joule per mole - Wikipedia

    en.wikipedia.org/wiki/Joule_per_mole

    It is also an SI derived unit of molar thermodynamic energy defined as the energy equal to one joule in one mole of substance. [1] [2] For example, the Gibbs free energy of a compound in the area of thermochemistry is often quantified in units of kilojoules per mole (symbol: kJ·mol −1 or kJ/mol), with 1 kilojoule = 1000 joules. [3]