Search results
Results from the WOW.Com Content Network
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
There is a natural unit of angle measurement (based on a revolution), a natural unit of length (based on the circumference of a great circle) and a natural unit of area (based on the area of the sphere). Each great circle is associated with a pair of antipodal points, called its poles which are the common intersections of the set of great ...
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2] That given point is the center of the sphere, and r is the sphere's radius.
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they ...
If the sphere is isometrically embedded in Euclidean space, the sphere's intersection with a plane is a circle, which can be interpreted extrinsically to the sphere as a Euclidean circle: a locus of points in the plane at a constant Euclidean distance (the extrinsic radius) from a point in the plane (the extrinsic center). A great circle lies ...
This gives the expected results of 4 π steradians for the 3D sphere bounded by a surface of area 4πr 2 and 2 π radians for the 2D circle bounded by a circumference of length 2πr. It also gives the slightly less obvious 2 for the 1D case, in which the origin-centered 1D "sphere" is the interval [− r , r ] and this is bounded by two ...