Search results
Results from the WOW.Com Content Network
Classic model used for deriving the equations of a mass spring damper model. The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers.
Comparison of damping factors for a solid state amplifier (Luxman L-509u) and a tube amplifier (Rogue Atlas) In typical solid state and tube amplifiers, the damping factor varies as a function of frequency. In solid state amplifiers, the damping factor usually has a maximum value at low frequencies, and it reduces progressively at higher ...
Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes [4] (ex. Suspension (mechanics)). Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.
The (non-negative) damping factor is adjusted at each iteration. If reduction of S {\displaystyle S} is rapid, a smaller value can be used, bringing the algorithm closer to the Gauss–Newton algorithm , whereas if an iteration gives insufficient reduction in the residual, λ {\displaystyle \lambda } can be increased ...
In the filtering application, the resistor becomes the load that the filter is working into. The value of the damping factor is chosen based on the desired bandwidth of the filter. For a wider bandwidth, a larger value of the damping factor is required (and vice versa). The three components give the designer three degrees of freedom.
where m is the (equivalent) mass, x stands for the amplitude of vibration, t for time, c for the viscous damping coefficient, and k for the stiffness of the system or structure.