enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Influence diagram - Wikipedia

    en.wikipedia.org/wiki/Influence_diagram

    An influence diagram (ID) (also called a relevance diagram, decision diagram or a decision network) is a compact graphical and mathematical representation of a decision situation. It is a generalization of a Bayesian network , in which not only probabilistic inference problems but also decision making problems (following the maximum expected ...

  3. Futures techniques - Wikipedia

    en.wikipedia.org/wiki/Futures_techniques

    The relevance tree has a form of a hierarchical structure that begins with a high level of abstraction and moves down with greater degree of detail in the following levels of the tree. It is a powerful technique that helps to ensure that a given problem or issue is broken into comprehensive detail and that important connections among the ...

  4. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    The left tree is the decision tree we obtain from using information gain to split the nodes and the right tree is what we obtain from using the phi function to split the nodes. The resulting tree from using information gain to split the nodes. Now assume the classification results from both trees are given using a confusion matrix.

  5. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  6. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    The samples that are on the left node of the tree would be classified as cancerous by the tree, while those on the right would be non-cancerous. This tree is relatively accurate at classifying the samples that were used to build it (which is a case of overfitting), but it would still classify sample C2 incorrectly. To remedy this, the tree can ...

  7. Value tree analysis - Wikipedia

    en.wikipedia.org/wiki/Value_Tree_Analysis

    Value tree analysis is a multi-criteria decision-making (MCDM) implement by which the decision-making attributes for each choice to come out with a preference for the decision makes are weighted. [1] Usually, choices' attribute-specific values are aggregated into a complete method.

  8. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Decision trees are a popular method for various machine learning tasks. Tree learning is almost "an off-the-shelf procedure for data mining", say Hastie et al., "because it is invariant under scaling and various other transformations of feature values, is robust to inclusion of irrelevant features, and produces inspectable models.

  9. Relevance (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Relevance_(information...

    The formal study of relevance began in the 20th century with the study of what would later be called bibliometrics. In the 1930s and 1940s, S. C. Bradford used the term "relevant" to characterize articles relevant to a subject (cf., Bradford's law). In the 1950s, the first information retrieval systems emerged, and researchers noted the ...