Search results
Results from the WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...
An orange that has been sliced into two halves. In mathematics, division by two or halving has also been called mediation or dimidiation. [1] The treatment of this as a different operation from multiplication and division by other numbers goes back to the ancient Egyptians, whose multiplication algorithm used division by two as one of its fundamental steps. [2]
12 / 135 \ 11,25 12 15 12 30 24 60 60 0 In Finland , the Italian method detailed above was replaced by the Anglo-American one in the 1970s. In the early 2000s, however, some textbooks have adopted the German method as it retains the order between the divisor and the dividend.
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.
For example, for 2 5 a + 1 there are 3 increases as 1 iterates to 2, 1, 2, 1, and finally to 2 so the result is 3 3 a + 2; for 2 2 a + 1 there is only 1 increase as 1 rises to 2 and falls to 1 so the result is 3a + 1.
Divide the first term of the dividend by the highest term of the divisor (x 3 ÷ x = x 2). Place the result below the bar. x 3 has been divided leaving no remainder, and can therefore be marked as used by crossing it out. The result x 2 is then multiplied by the second term in the divisor −3 = −3x 2. Determine the partial remainder by ...
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n