Search results
Results from the WOW.Com Content Network
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2 π) of the whole circle, so its area is θ/2. We assume here that θ < π /2. = = = = The area of triangle OAD is AB/2, or sin(θ)/2.
Bézout's identity (despite its usual name, it is not, properly speaking, an identity) Binet-cauchy identity; Binomial inverse theorem; Binomial identity; Brahmagupta–Fibonacci two-square identity; Candido's identity; Cassini and Catalan identities; Degen's eight-square identity; Difference of two squares; Euler's four-square identity; Euler ...
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.
Using the usual notations for a triangle (see the figure at the upper right), where a, b, c are the lengths of the three sides, A, B, C are the vertices opposite those three respective sides, α, β, γ are the corresponding angles at those vertices, s is the semiperimeter, that is, s = a + b + c / 2 , and r is the radius of the inscribed circle, the law of cotangents states that
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Euler's identity is also a special case of the more general identity that the n th roots of unity, for n > 1, add up to 0: = = Euler's identity is the case where n = 2. A similar identity also applies to quaternion exponential: let {i, j, k} be the basis quaternions; then,