Search results
Results from the WOW.Com Content Network
Cauchy–Schwarz inequality (Modified Schwarz inequality for 2-positive maps [27]) — For a 2-positive map between C*-algebras, for all , in its domain, () ‖ ‖ (), ‖ ‖ ‖ ‖ ‖ ‖. Another generalization is a refinement obtained by interpolating between both sides of the Cauchy–Schwarz inequality:
He is credited with an early discovery of the Cauchy–Schwarz inequality, proving it for the infinite dimensional case in 1859, many years prior to Hermann Schwarz's research on the subject. Bunyakovsky is an author of Foundations of the mathematical theory of probability (1846). [7] Bunyakovsky published around 150 research papers. [1]
The Cauchy–Schwarz inequality ... where i, j, k are distinct, and J i denotes angular momentum along the x i axis. This relation implies that unless all three ...
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
In mathematics, the following inequality is known as Titu's lemma, Bergström's inequality, Engel's form or Sedrakyan's inequality, respectively, referring to the article About the applications of one useful inequality of Nairi Sedrakyan published in 1997, [1] to the book Problem-solving strategies of Arthur Engel published in 1998 and to the book Mathematical Olympiad Treasures of Titu ...
In mathematical analysis, Schwarz's theorem (or Clairaut's theorem on equality of mixed partials) [9] named after Alexis Clairaut and Hermann Schwarz, states that for a function : defined on a set , if is a point such that some neighborhood of is contained in and has continuous second partial derivatives on that neighborhood of , then for all i ...
Using the Cauchy–Schwarz inequality, we obtain () with equality if and only if and are linearly dependent, and so the inequality is indeed true. {\displaystyle \blacksquare }
The special case p = q = 2 gives a form of the Cauchy–Schwarz inequality. [1] Hölder's inequality holds even if ‖ fg ‖ 1 is infinite, the right-hand side also being infinite in that case. Conversely, if f is in L p (μ) and g is in L q (μ), then the pointwise product fg is in L 1 (μ).