Search results
Results from the WOW.Com Content Network
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
The derivative of the function given by () = + + is ′ = + () () + = + (). Here the second term was computed using the chain rule and the third term using the product rule. The known derivatives of the elementary functions , , (), (), and =, as well as the constant , were also used.
Product rule – Formula for the derivative of a product Reciprocal rule – differentiation rule Pages displaying wikidata descriptions as a fallback Table of derivatives – Rules for computing derivatives of functions Pages displaying short descriptions of redirect targets
With the multi-index notation for partial derivatives of functions of several variables, the Leibniz rule states more generally: =: () ().. This formula can be used to derive a formula that computes the symbol of the composition of differential operators.
The partial derivative of f with respect to x does not give the true rate of change of f with respect to changing x because changing x necessarily changes y. However, the chain rule for the total derivative takes such dependencies into account. Write () = (, ()). Then, the chain rule says
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.
The Fréchet derivative is quite similar to the formula for the derivative found in elementary one-variable calculus, (+) =, and simply moves A to the left hand side. However, the Fréchet derivative A denotes the function t ↦ f ′ ( x ) ⋅ t {\displaystyle t\mapsto f'(x)\cdot t} .