Search results
Results from the WOW.Com Content Network
The Brønsted–Lowry theory (also called proton theory of acids and bases [1]) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923.
Equilibrium chemistry is concerned with systems in chemical equilibrium.The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero.
In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. [1]
These calculations find application in many different areas of chemistry, biology, medicine, and geology. For example, many compounds used for medication are weak acids or bases, and a knowledge of the p K a values, together with the octanol-water partition coefficient , can be used for estimating the extent to which the compound enters the ...
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
Graves graduated from Union College in New York in 1940 and received his master's degree and PhD [3] in psychology in 1943 and 1945, respectively, from Western Reserve University in Cleveland, Ohio. He taught at Western Reserve for three years before returning to Union College as an Associate Professor in 1948.
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change.
Gravimetric analysis describes a set of methods used in analytical chemistry for the quantitative determination of an analyte (the ion being analyzed) based on its mass. The principle of this type of analysis is that once an ion's mass has been determined as a unique compound, that known measurement can then be used to determine the same analyte's mass in a mixture, as long as the relative ...