enow.com Web Search

  1. Ad

    related to: spss one way anova tutorial step by step

Search results

  1. Results from the WOW.Com Content Network
  2. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".

  3. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    The parametric equivalent of the Kruskal–Wallis test is the one-way analysis of variance (ANOVA). A significant Kruskal–Wallis test indicates that at least one sample stochastically dominates one other sample. The test does not identify where this stochastic dominance occurs or for how many pairs of groups stochastic dominance obtains.

  4. Brown–Forsythe test - Wikipedia

    en.wikipedia.org/wiki/Brown–Forsythe_test

    When a one-way ANOVA is performed, samples are assumed to have been drawn from distributions with equal variance. If this assumption is not valid, the resulting F -test is invalid. The Brown–Forsythe test statistic is the F statistic resulting from an ordinary one-way analysis of variance on the absolute deviations of the groups or treatments ...

  5. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    Typically, however, the one-way ANOVA is used to test for differences among at least three groups, since the two-group case can be covered by a t-test. [56] When there are only two means to compare, the t-test and the ANOVA F-test are equivalent; the relation between ANOVA and t is given by F = t 2.

  6. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    Tukey's HSD and Scheffé's procedure are one-step procedures and can be done without the omnibus F having to be significant. They are "a posteriori" tests, but in this case, "a posteriori" means "without prior knowledge", as in "without specific hypotheses." On the other hand, Fisher's Least Significant Difference test is a two-step procedure.

  7. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    Common examples of the use of F-tests include the study of the following cases . One-way ANOVA table with 3 random groups that each has 30 observations. F value is being calculated in the second to last column The hypothesis that the means of a given set of normally distributed populations, all having the same standard deviation, are equal.

  8. Tukey's range test - Wikipedia

    en.wikipedia.org/wiki/Tukey's_range_test

    Tukey's range test, also known as Tukey's test, Tukey method, Tukey's honest significance test, or Tukey's HSD (honestly significant difference) test, [1] is a single-step multiple comparison procedure and statistical test.

  9. Tukey's test of additivity - Wikipedia

    en.wikipedia.org/wiki/Tukey's_test_of_additivity

    The most common setting for Tukey's test of additivity is a two-way factorial analysis of variance (ANOVA) with one observation per cell. The response variable Y ij is observed in a table of cells with the rows indexed by i = 1,..., m and the columns indexed by j = 1,..., n. The rows and columns typically correspond to various types and levels ...

  1. Ad

    related to: spss one way anova tutorial step by step