enow.com Web Search

  1. Ad

    related to: non zero field lines in math examples problems pdf file

Search results

  1. Results from the WOW.Com Content Network
  2. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as a ⋅ b, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse −a for all elements a, and of a multiplicative inverse b −1 for every nonzero element b.

  3. Glossary of field theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_field_theory

    A field is a commutative ring (F, +, *) in which 0 ≠ 1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division. The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F ×;

  4. Field line - Wikipedia

    en.wikipedia.org/wiki/Field_line

    Field lines depicting the electric field created by a positive charge (left), negative charge (center), and uncharged object (right). A field line is a graphical visual aid for visualizing vector fields. It consists of an imaginary integral curve which is tangent to the field vector at each point along its length.

  5. Isotropic quadratic form - Wikipedia

    en.wikipedia.org/wiki/Isotropic_quadratic_form

    In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise it is a definite quadratic form. More explicitly, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0.

  6. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    The set of non-zero elements in GF(q) is an abelian group under the multiplication, of order q – 1. By Lagrange's theorem, there exists a divisor k of q – 1 such that x k = 1 for every non-zero x in GF(q). As the equation x k = 1 has at most k solutions in any field, q – 1 is the lowest possible value for k.

  7. Conway polynomial (finite fields) - Wikipedia

    en.wikipedia.org/wiki/Conway_polynomial_(finite...

    In mathematics, the Conway polynomial C p,n for the finite field F p n is a particular irreducible polynomial of degree n over F p that can be used to define a standard representation of F p n as a splitting field of C p,n. Conway polynomials were named after John H. Conway by Richard A. Parker, who was the first to define them and compute ...

  8. Near-field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Near-field_(mathematics)

    In mathematics, a near-field is an algebraic structure similar to a division ring, except that it has only one of the two distributive laws. Alternatively, a near-field is a near-ring in which there is a multiplicative identity and every non-zero element has a multiplicative inverse .

  9. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    Here, the order of the generator, | g |, is the number of non-zero elements of the field. In the case of GF(2 8) this is 2 8 − 1 = 255. That is to say, for the Rijndael example: (x + 1) 255 = 1. So this can be performed with two look up tables and an integer subtract.

  1. Ad

    related to: non zero field lines in math examples problems pdf file