enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fast fission - Wikipedia

    en.wikipedia.org/wiki/Fast_fission

    Some atoms, notably uranium-238, do not usually undergo fission when struck by slow neutrons, but do split when struck with neutrons of high enough energy. [1] The fast neutrons produced in a hydrogen bomb by fusion of deuterium and tritium have even higher energy than the fast neutrons produced in a nuclear reactor.

  3. Fast-neutron reactor - Wikipedia

    en.wikipedia.org/wiki/Fast-neutron_reactor

    The BN-350 fast-neutron reactor at Aktau, Kazakhstan.It operated between 1973 and 1994. A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors.

  4. Uranium-238 - Wikipedia

    en.wikipedia.org/wiki/Uranium-238

    238 U can produce energy via "fast" fission. In this process, a neutron that has a kinetic energy in excess of 1 MeV can cause the nucleus of 238 U to split. Depending on design, this process can contribute some one to ten percent of all fission reactions in a reactor, but too few of the average 2.5 neutrons [6] produced in each fission have ...

  5. Nuclear Fission Has Been Damn Near Impossible to Find ... - AOL

    www.aol.com/nuclear-fission-damn-near-impossible...

    This fission occurs when atomic nuclei grab free neutrons and form heavy, but unstable, elements. When it comes to nuclear energy , human engineering and the rest of the universe are a bit at odds.

  6. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    Thus, in any fission event of an isotope in the actinide mass range, roughly 0.9 MeV are released per nucleon of the starting element. The fission of 235 U by a slow neutron yields nearly identical energy to the fission of 238 U by a fast neutron. This energy release profile holds for thorium and the various minor actinides as well. [14]

  7. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    For "thermal" (slow-neutron) fission reactors, the typical prompt neutron lifetime is on the order of 10 −4 seconds, and for fast fission reactors, the prompt neutron lifetime is on the order of 10 −7 seconds. [16] These extremely short lifetimes mean that in 1 second, 10,000 to 10,000,000 neutron lifetimes can pass.

  8. Six factor formula - Wikipedia

    en.wikipedia.org/wiki/Six_factor_formula

    Fast fission factor (epsilon) ... Lethargy is defined as decrease in neutron energy. (fast utilization) is the probability that a fast neutron is absorbed in fuel. is ...

  9. Nuclear reactor physics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reactor_physics

    The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.