Search results
Results from the WOW.Com Content Network
The characteristic equation of a third-order constant coefficients or Cauchy–Euler (equidimensional variable coefficients) linear differential equation or difference equation is a cubic equation. Intersection points of cubic Bézier curve and straight line can be computed using direct cubic equation representing Bézier curve.
The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...
The cubic-plus-chain (CPC) [28] [29] [30] equation of state hybridizes the classical cubic equation of state with the SAFT chain term. [21] [22] The addition of the chain term allows the model to be capable of capturing the physics of both short-chain and long-chain non-associating components ranging from alkanes to polymers. The CPC monomer ...
In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation F ( x , y , z ) = 0 {\displaystyle F(x,y,z)=0} applied to homogeneous coordinates ( x : y : z ) {\displaystyle (x:y:z)} for the projective plane ; or the inhomogeneous version for the affine space determined by setting z = 1 in such an ...
Cubic equations of state originated from the van der Waals equation of state. Hence, all cubic equations of state can be considered 'modified van der Waals equation of state'. There is a very large number of such cubic equations of state. For process engineering, cubic equations of state are today still highly relevant, e.g. the Peng Robinson ...
Cubic plane curve (mathematics), a plane algebraic curve C defined by a cubic equation; Cubic reciprocity (mathematics - number theory), a theorem analogous to quadratic reciprocity; Cubic surface, an algebraic surface in three-dimensional space; Cubic zirconia, in geology, a mineral that is widely synthesized for use as a diamond simulacra
Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced the the computation of square and cube roots.
Descartes theory of geometric solution of equations uses a parabola to introduce cubic equations, in this way it is possible to set up an equation whose solution is a cube root of two. Note that the parabola itself is not constructible except by three dimensional methods.