enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  3. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  4. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Graphs as defined in the two definitions above cannot have loops, because a loop joining a vertex to itself is the edge (for an undirected simple graph) or is incident on (for an undirected multigraph) {,} = {} which is not in {{,},}. To allow loops, the definitions must be expanded.

  5. Graph labeling - Wikipedia

    en.wikipedia.org/wiki/Graph_labeling

    In the mathematical discipline of graph theory, a graph labeling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. [1] Formally, given a graph G = (V, E), a vertex labeling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph.

  6. Graph (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Graph_(abstract_data_type)

    The basic operations provided by a graph data structure G usually include: [1] adjacent(G, x, y): tests whether there is an edge from the vertex x to the vertex y; neighbors(G, x): lists all vertices y such that there is an edge from the vertex x to the vertex y; add_vertex(G, x): adds the vertex x, if it is not there;

  7. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater. More precisely, any graph G (complete or not) is said to be k -vertex-connected if it contains at least k + 1 vertices, but does not contain a set of k − 1 vertices whose removal disconnects the graph; and κ ( G ) is defined as the largest k such ...

  8. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    A graph has a k-coloring if and only if it has an acyclic orientation for which the longest path has length at most k; this is the Gallai–Hasse–Roy–Vitaver theorem (NešetÅ™il & Ossona de Mendez 2012). For planar graphs, vertex colorings are essentially dual to nowhere-zero flows. About infinite graphs, much less is known.

  9. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    All complete graphs are their own maximal cliques. They are maximally connected as the only vertex cut which disconnects the graph is the complete set of vertices. The complement graph of a complete graph is an empty graph. If the edges of a complete graph are each given an orientation, the resulting directed graph is called a tournament.