enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Material implication (rule of inference) - Wikipedia

    en.wikipedia.org/wiki/Material_implication_(rule...

    An example: we are given the conditional fact that if it is a bear, then it can swim. Then, all 4 possibilities in the truth table are compared to that fact. If it is a bear, then it can swim — T; If it is a bear, then it can not swim — F; If it is not a bear, then it can swim — T because it doesn’t contradict our initial fact.

  3. Material conditional - Wikipedia

    en.wikipedia.org/wiki/Material_conditional

    For example, even though material conditionals with false antecedents are vacuously true, the natural language statement "If 8 is odd, then 3 is prime" is typically judged false. Similarly, any material conditional with a true consequent is itself true, but speakers typically reject sentences such as "If I have a penny in my pocket, then Paris ...

  4. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).

  5. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    The symbol for material implication signifies the proposition as a hypothetical, or the "if–then" form, e.g. "if P, then Q". The biconditional statement of the rule of transposition (↔) refers to the relation between hypothetical (→) propositions , with each proposition including an antecedent and consequential term.

  6. Modus tollens - Wikipedia

    en.wikipedia.org/wiki/Modus_tollens

    Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

  7. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    The proposition to be proved is P. We assume P to be false, i.e., we assume ¬P. It is then shown that ¬P implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, Q and ¬Q, and appealing to the law of noncontradiction. Since assuming P to be false leads to a contradiction, it is concluded that P is ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Implicational propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Implicational...

    Implication alone is not functionally complete as a logical operator because one cannot form all other two-valued truth functions from it.. For example, the two-place truth function that always returns false is not definable from → and arbitrary propositional variables: any formula constructed from → and propositional variables must receive the value true when all of its variables are ...