Search results
Results from the WOW.Com Content Network
This triggered a counter-reaction of some scientists and scientific laymen who could not accept the concepts of modern physics, including relativity theory and quantum mechanics. The ensuing public controversy regarding the scientific status of Einstein's theory of gravity, which was unprecedented, was partly carried out in the press.
In classical mechanics, a special status is assigned to time in the sense that it is treated as a classical background parameter, external to the system itself.This special role is seen in the standard Copenhagen interpretation of quantum mechanics: all measurements of observables are made at certain instants of time and probabilities are only assigned to such measurements.
Einstein himself considered the introduction of the cosmological constant in his 1917 paper founding cosmology as a "blunder". [3] The theory of general relativity predicted an expanding or contracting universe, but Einstein wanted a static universe which is an unchanging three-dimensional sphere, like the surface of a three-dimensional ball in four dimensions.
Einstein was the first physicist to say that Max Planck's discovery of the energy quanta would require a rewriting of the laws of physics.To support his point, in 1905 Einstein proposed that light sometimes acts as a particle which he called a light quantum (see photon and wave–particle duality).
Quantum entanglement can be defined only within the formalism of quantum mechanics, i.e., it is a model-dependent property. In contrast, nonlocality refers to the impossibility of a description of observed statistics in terms of a local hidden variable model, so it is independent of the physical model used to describe the experiment.
When describing quantum fields in general, a Hilbert space model with just one particle is enough. In fact, it constrains the math in a way that makes the whole calculation work, because the one ...
In the theory of general relativity, the concept of causality is generalized in the most straightforward way: the effect must belong to the future light cone of its cause, even if the spacetime is curved. New subtleties must be taken into account when we investigate causality in quantum mechanics and relativistic quantum field theory in
Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them (e.g. the Dirac or path-integral formalism) also work with special relativity.