Search results
Results from the WOW.Com Content Network
Some collections maintain a linear ordering of items – with access to one or both ends. The data structure implementing such a collection need not be linear. For example, a priority queue is often implemented as a heap, which is a kind of tree. Notable linear collections include: list; stack; queue; priority queue; double-ended queue
The semantics of priority queues naturally suggest a sorting method: insert all the elements to be sorted into a priority queue, and sequentially remove them; they will come out in sorted order. This is actually the procedure used by several sorting algorithms , once the layer of abstraction provided by the priority queue is removed.
Priority queue (such as a heap) Double-ended queue (deque) Double-ended priority queue (DEPQ) Single-ended types, such as stack, generally only admit a single peek, at the end that is modified. Double-ended types, such as deques, admit two peeks, one at each end. Names for peek vary. "Peek" or "top" are common for stacks, while for queues ...
Priority queue: A priority queue is an abstract concept like "a list" or "a map"; just as a list can be implemented with a linked list or an array, a priority queue can be implemented with a heap or a variety of other methods. K-way merge: A heap data structure is useful to merge many already-sorted input streams into a single sorted output ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
A van Emde Boas tree (Dutch pronunciation: [vɑn ˈɛmdə ˈboːɑs]), also known as a vEB tree or van Emde Boas priority queue, is a tree data structure which implements an associative array with m-bit integer keys. It was invented by a team led by Dutch computer scientist Peter van Emde Boas in 1975. [1]
The d-ary heap consists of an array of n items, each of which has a priority associated with it. These items may be viewed as the nodes in a complete d-ary tree, listed in breadth first traversal order: the item at position 0 of the array (using zero-based numbering) forms the root of the tree, the items at positions 1 through d are its children, the next d 2 items are its grandchildren, etc.
This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. [3] Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure.